

Research questions

The role of horizontal paved urban surfaces for HS mitigation (1st phase) Lack of basic knowledge and process based models for evaporation and runoff prediction

(h1) What controls actual evaporation and cooling potential of paved urban soils?

(h2) How important is the lateral heat impact (advection) on evaporation? (h3) Is it possible to adapted the pavement design to mitigate UHI?

The role of vertical green for HS mitigation (1st and 2nd phase)

Lack of basic knowledge on evapotranspiration of vertical green (=facade green) and the impact of "building factors" such as water supply, shading, wind, building temperature, light etc.

(v1) What controls the actual and potential evapotranspiration from vertical green? (v2) Can the ET_{act} (vertical) be expressed following the Penman-Monteith approach? (v3) What are the potentials of vertical green to mitigate UHI?

Synthesis

(s1) Process based model on water fluxes allowing quantification of E_{act} , run-off and percolation rate in high temporal resolution for pavements

(s2) Process based model on evapotranspiration (=cooling) and water demand for vertical green

(s3) Deriving mitigation strategies using runoff water from pavements for vertical facade green

Horizontal paved urban surfaces

• high resolution lysimeter studies at two sites: suburb Berlin-Marienfelde (=reference site) and a typical inner-city climate situation heavily influenced by buildings and soil sealing

• upgrading existing lysimeters and construction of lysimeter pans for inner city sites

coupling evaporation measurements with IR imaging

UCaHS - Urban Climate and Heat Stress in mid-latitude cities in view of climate change

Methodology

Vertical green

• xylem flux and corresponding vertical climate measurements

Extraction of urban factors from 3D city models: extracting net radiation as a function from height

Prof. Dr. Gerd Wessolek, Soil Conservation Group, Department of Ecology, School VI Planning – Environment, Technische Universität Berlin (gerd.wessolek@tu-berlin.de) **Dr. Thomas Nehls**, Soil Conservation Group, Department of Ecology, School VI Planning – Environment, Technische Universität Berlin (thomas.nehls@tu-berlin.de)

- calibration of LAI photography

Sub-project 4.1

Research approach

Horizontal paved urban surfaces

• high resolution lysimeter studies at two sites: suburb in Berlin-Marienfelde (=reference site) and an inner-city climate situation highly influenced by buildings and soil sealing

Hypothesis: "urban influence" can be reduced to energy import by advection

Vertical green urban surfaces

plant structure [LAI = f(t)]

 measuring plant water uptake and biomass production Hypothesis: ET_{act} of vertical green can be calculated using a modified Penman Monteith using a new function expressing influence of advection, water supply and plant parameter

WP	Description	Work schedule				
100	Project management					
110	Reporting					
120	Logistics and organisation					
200	Individual research					
210	Measuring evaporation and transpiration					
211	Measurements and experiments at a reference site in Berlin-Marienfelde using existing lysimeter technique and a new setup for façade green as shown schematically in Fig. 3.2					
212	Setup of paved lysimeters inside the city, measurements as shown schematically in Fig. 3.4					
213	Facade greening lysimeters with various water supply, setup, measurements as shown in Fig. 3.4					
220	Model build up and validation					
221	Deriving a model for ETa _{paved} using meteorological data Calculation of various scenarios with and without advection					
222	Up scaling the model to deriving a model ET0 _{urban} = f (ET0)					
223	Testing both models for other climate and site conditions, integration of literature data into the ET0 _{urban} concept					
230	Modelling influence of facade greening on cooling					
231	First simulations, scenarios, synthesis					
300	Collaboration within the Research Module (RM)					
310	Building energy simulations with and without vertical green					
311	We are measuring data for delivering boundary conditions for RM 4.2 and RM 4.3					
400	Collaboration within Research Links (RL)					
410	Atmospheric processes, urban/building green and pavements					
411	Vertical green plant parameter such as leaf area index, active leaves area and stomata resistances for various water supply conditions.					
412	Comparison between predicted (micro scale atmospheric model) and experimental data					
500	Collaboration within Research Clusters (RC)					
510	From regional weather and climate to indoor climates					
511	Analysing effects of urban and rural climate data on prediction actual evapotranspiration for various water supply conditions					
530	Effectiveness of actions for reducing heat-stress risks					
531	Analysing effectiveness of using vertical green for reducing heat stress					
540	Efficiency of actions for reducing heat-stress risks					
541	Cost benefit analysis of vertical greening					
600	Collaboration within the research unit					
610	Projected heat-stress hazards, vulnerabilities and risks					
620	Transferability of the methodology to other mid-latitude cities					
630	Identification of future research and development activities					
640	Preparation of the follow-up proposal					

Setup to measure E_{pot} , E_{act} , P_{pot} , and P_{act} and xylem flux for controlled water supply conditions.

• modeling evapotranspiration rates as a function of water supply, urban matrix, and

 $\underline{Eact_{urb}} \approx \underline{Pact_{urb}}$ Epot_{urb} Ppot_{urb}

Hypothetical actual evapotranspiration rate photosynthesis of a façade greenery under urban climate and reference climate conditions with varying water supply

Work schedule

