

Research questions

Characterisation of indoor heat stress

- How is indoor heat stress influenced by outdoor climate and position of a room within a building, especially during extreme events?
- How is indoor heat stress distributed within a single room?

Reaction of humans to indoor heat stress

- Does air-conditioning have a positive effect on patients in hospital rooms?
- How do people change their behaviour in periods of exposure to indoor heat stress?

Quantification of indoor heat stress

- Which bio-thermal index is most suitable to quantify indoor heat stress?
- Which method should be used to quantify heat-stress hazards?

Assessment of adaptation strategies to climate change in urban planning

Which adaptation strategies to climate change in urban planning show the capacity to reduce indoor heat-stress hazards?

Research approach

O coarse-resolutio hermal room mode

ISYS CFD, up to severa lions elements

Link to evaluate indoor simulations (RM 2.2)

Schematic set-up of indoor measurement equipment during the first year

Prof. Dr. Wilfried Endlicher, Department of Geography, Humboldt-Universität zu Berlin (wilfried.endlicher@geo.hu-berlin.de) **Dr. Marcel Langner,** Department of Geography, Humboldt-Universität zu Berlin (marcel.langner@geo.hu-berlin.de)

UCaHS - Urban Climate and Heat Stress in mid-latitude cities in view of climate change

RM 1 Outdoor climate and heatstress hazard

RM 1.1: Regional climate Gerstengarbe (HUB, PIK)

> RM 1.2: Urban climate Scherer (TUB)

RM 4 Climate-responsive buildings

> RM 4.1: Building green Wessolek (TUB)

RM 4.2: Building designs Steffan (TUB)

RM 4.3: Building technologies Ziegler (TUB)

Research Unit

RM 5 Urban system

RM 5.1: Constellations Köppel (TUB), Schreurs (FUB)

> RM 5.2: Urban patterns Kleinschmit (TUB)

during the three years

Sub-project 2.1 Indoor observations

- mesh network
- access

Quantification of indoor heat stress and heat-stress hazard

Computation of hourly heat-stress intensities, the annual mean magnitude of heatstress events and indoor heat-stress hazard

Questionnaires study

Asks for information about self-reported perception of indoor heat stress, selfestimated vulnerability and measures to reduce heat stress

Work schedule

WP	Description	Work schedule	е
100	Project management	•	
110	Reporting		
120	Logistics and organisation		
200	Individual research		
210	Quantification of day- and night-time indoor heat stress		
211	Measurement of meteorological parameters indoors		
212	Sensitivity of different bio-thermal indices to varying meteorological parameters		
300	Collaboration within the Research Module (RM)		
310	Validation of the indoor climate system models (ICSM_fine, ICSM_coarse), based on indoor observations		
400	Collaboration within Research Links (RL)		
410	Linkages between indoor heat-stress hazard and vulnerability		
420	Indoor heat stress in hospital, variation of indoor climate for patients		
500	Collaboration within Research Clusters (RC)		
510	From regional weather and climate to indoor and climates		
520	Present-day heat-stress hazards, vulnerabilities and risks		
530	Effectiveness of actions for reducing heat-stress risks		
600	Collaboration within the Research Unit (RU)		
610	Projected heat-stress hazards, vulnerabilities and risks		
620	Transferability of the methodology to other mid-latitude cities		
630	Identification of future research and development activities		
640	Preparation of the follow-up proposal		

Methodology

- 20 globe thermometer will measure the globe temperature, which is used to calculate mean radiant temperature
- supported by the occasionally use of a thermographic camera (FLIR B365)

25 HC2-WIN-USB sensors from rotronic will be used to establish a wireless

- 75 **Testo 175-H2** loggers will be used in rooms and locations with no internet

Table 1: Work packages (WP) and associated work schedule (in half-yearly intervals)

