

Research questions

Analysis period 2001 to 2010

- How many heat-stress events were observed in Berlin between 2001 to 2010?
- How large are the heat-stress risks, in particular excess mortality and morbidity, as well as prolongation of medical care in hospitals?
- Which approach to quantifying heat-stress hazards is most appropriate for explaining a statistically significant part of the variances in the time series of the observed effects that define the respective risks?
- How do outdoor urban-weather conditions force indoor climates and heatstress hazards, depending on a broad variety of controlling factors?
- How accurately can time series of heat-stress hazards be derived from validated atmospheric model simulations? What level of detail is required for the model simulations? How do errors/uncertainties in the forcing data propagate to the resulting hazard time series?
- Which kind of statistical weather-data aggregation is most appropriate to characterise the urban climate with respect to heat-stress hazards and energy demands by buildings for heating and cooling?

Projection period 2041-2050

- Which change in heat-stress hazards would result from different building designs and technologies, as well as from different forms of urban green and open spaces?
- What methods are suitable for down-scaling global climate projections to urban scales, and how large are the errors/uncertainties in the urban-climate projections?
- How strongly will heat-stress hazards and risks change in the future, applying three by three combinations of different projected urban climates and different projections of urban development?

Research approach Multi-scale atmospheric modelling Meso-scale modelling WRF urban modelling system (SLUCM, BEP, nan-response rological indexe BEM) Real case (2001 – 2010) hur modelling (human-biometeol e.g. UTCI, PET, PMV, PT) Meso- to local-scale modelling (WRF urban modelling system, MetPhoMod) Micro-scale modelling (ENVI-met, SOLWEIG)

Modell validation and calibration, specification of urban canopy parameters

Research questions

Prof. Dr. Dieter Scherer, Chair of Climatology, Department of Ecology, School VI Planning – Environment, Technische Universität Berlin (dieter.scherer@tu-berlin.de) **Dr. Fred Meier**, Chair of Climatology, Department of Ecology, School VI Planning – Environment, Technische Universität Berlin (fred.meier@tu-berlin.de)

UCaHS - Urban Climate and Heat Stress in mid-latitude cities in view of climate change

Quantification of heat-stress hazards and risks

Sub-project 1.2 **Urban climate**

	UD 1	UD 2	UD 3
C 1	HS	HS	HS
	1.1	1.2	1.3
C 2	HS	HS	HS
	2.1	2.2	2.3
C 3	HS	HS	HS
	3.1	3.2	3.3

10.07.2010 – Daytime mean T_{mrt} (°C)

WP	Description		Work schedule			
100	Project management					
110	Reporting					
120	Logistics and organisation					
200	Individual research	_				
210	Meso- to local-scale simulations of atmospheric processes					
220	Local- to micro-scale simulations of atmospheric processes					
230	Multi-scale observations of atmospheric processes					
240	Human response modelling for outdoor weather conditions					
300	Collaboration within the Research Module (RM)					
310	Urban canopy parameters for multi-scale atmospheric modelling					
320	Model inter-comparison for error/uncertainty assessment					
330	From regional weather and climate to outdoor climates					
400	Collaboration within Research Links (RL)		-			
410	Atmospheric processes, urban/building green and pavements					
420	Urban climate and building energy demands					
490	Urban climate projections					
500	Collaboration within Research Clusters (RC)		_			
510	From regional weather and climate to indoor climates					
520	Present-day heat-stress hazards, vulnerabilities and risks					
530	Effectiveness of actions for reducing heat-stress risks					
540	Efficiency of actions for reducing heat-stress risks					
600	Collaboration within the Research Unit (RU)		_			
610	Projected heat-stress hazards, vulnerabilities and risks					
620	Transferability of the methodology to other mid-latitude cities					
630	Identification of future research and development activities					
640	Preparation of the follow-up proposal					

Work schedule

Table 1: Work packages (WP) and associated work schedule (in half-yearly intervals)

